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Abstract — Maximizing energy autonomy is a consistent chal-
lenge when deploying mobile robots in ionizing radiation or
other hazardous environments. Having a reliable robot system is
essential for successful execution of missions and to avoid manual
recovery of the robots in environments that are harmful to human
beings. For deployment of robots missions at short notice, the
ability to know beforehand the energy required for performing
the task is essential. This paper presents a on-line method for
predicting energy requirements based on the pre-determined
power models for a mobile robot. A small mobile robot, Khepera
III is used for the experimental study and the results are
promising with high prediction accuracy. The applications of the
energy prediction models in energy optimization and simulations
are also discussed along with examples of significant energy
savings.

Keywords: Mobile robots, Energy management, Energy opti-
mization, Energy prediction, Energy consumption models.

I. INTRODUCTION

Mobile robots are used in various applications such as re-

mote inspection, survey and defence applications. The robot’s

energy consumption is dependent on the nature of tasks to

be performed and the time to complete the assigned mis-

sion. In hostile, nuclear or disaster environments, the robots

will be equipped with teleoperation capabilities and/or semi-

autonomous features to ease the operator overload. For these

robotic applications, the main energy autonomy challenges to

be considered are that the robot should be able to go over long

distances and operate for relatively long periods.

Since robots deployed in hazardous environments usually

carry a finite power source such as batteries (because of envi-

ronmental constraints), it is critical to ensure before executing

the mission that the robot has sufficient energy to complete

the task by predicting the energy requirements before-hand.

In addition, the robot should be able to take actions if the

remaining energy in the robot is not enough to make a return

trip to its charging station.

The robots need to manage their energy consumption to

avoid running out of energy as this would mean personnel

access to retrieve or recover the robot from the hazardous (e.g.

radiation) area where it was deployed (For e.g. [1]). Also, the

robot’s energy autonomy should be optimized to provide more

flexibility in possible interventions (in terms of distance trav-

elled and mission time). Predicting the energy requirements

of various components in a robot helps making decisions on

optimizing the tasks and the mission to be accomplished with

the available energy capacity. It is important to develop energy-

efficient designs considering multiple components together.

In this paper, we extend our work in [2] and propose an

energy prediction modelling approach for a small scale mobile

robot platform. This paper also discusses the applications of

using energy prediction models in on-line energy monitoring,

energy optimization, and simulations in autonomous or tele-

operated robots. In the next section, we review the literature

regarding energy management in mobile robots and in the

”Methodology” section, the theoretical basis behind this work

is discussed. Finally, we present the experimental set-up and

discuss the results along with the energy model applications.

II. RELATED WORK

The significance of power management for long-term oper-

ation of autonomous robots is discussed in the work by Desh-

mukh et al. [3], with challenges in terms of battery technology,

power estimation and auto recharging. In [4], a robot with

an auto-recharging system is proposed with emphasis on the

aspects improving the robustness (or reliability) of the system.

A method for automatically recharging the batteries using the

robot’s built-in sensors to control docking with a recharging

station was proposed in [5]. Much research has been conducted

on mobile robot motion energy optimization through motion

planning [6], [7] and path planning [8], [9] techniques. Models

for locomotion power and dynamics have been widely studied.

Wei Yu et al [10] emphasize that power models of motors are

needed for the locomotion planning to complete time or energy

constrained missions. Power models for skid steered wheeled

[10], [11] and tracked vehicles [12] are proposed for various

turning radius and surface conditions.

Some works analyse the energy consumption of different

components in robots. Liu et al. [13] present an energy break-

down table of a Mars rover. Michaud et al. [14] estimate the

energy consumption of a rover including the communication

power. However, they do not build power models for each

component. A study [15] indicates that sensing, computation

and communication consume significant amounts of power

compared to locomotion power. Therefore, management of

all power consuming modules is important. In [16], power

models were used to optimize the deployment of robots under

energy and timing constraints. The MarXbot [17] can auto-

replace its batteries with hot swapping capability. In [17], it is

proposed that power models of various components allow the

robot to estimate when the robot should exchange its battery. A
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nice behavioural model for finding the optimal time at which

a robot (ot the mobile agent) should go back to recharge is

presented in [18].

Hostile or scientific facilities (such as at CERN) generally

are not designed to accommodate mobile teleoperated robots.

It is complicated to navigate the mobile robot to the work

site due to the compact spaces and unstructured sections. For

e.g. special provisions were made for the TIM robot [19] to

pass through the sector doors in the Large Hadron Collider

at CERN. Because of such restrictions, auto-recharging tech-

niques [3]–[5], [18] cannot be used for telerobotic applications

in scientific facilities emitting ionizing radiations.

TABLE I: COMPARISON OF VARIOUS MOBILE ROBOTS MASS AND
POWER CONSUMPTION

Robot Mass (kg) Maximum locomotion power (W)
Khepera III [This paper] 0.69 0.8 (28%)

MarXbot [17] 1 3.5 (33%)
Pioneer DX [15] 9 10.6 (34%)

Auriga-β [12] 286 3000 (87%)
TIM [19] 500 2000 (92%)

Table I gives a comparison of some mobile robot’s mass

and power consumption considering the maximum power for

each component. It can be observed that as the robot becomes

heavier; the locomotion power accounts for higher percentage

of the total power because the locomotion power depends on

the size and the mass of the robot while the computers and

sensors are relatively independent of the robot’s size and mass.

It should be noted that, adding more batteries to the robot adds

more mass thereby requiring more power for locomotion.

Analysis of previous studies suggest that there is no com-

mon approach for creating power and energy consumption

models of various components irrespective of the type of

mobile robot and hence a generic modular approach for

building power models and predicting the energy consumption

of a mobile robot is proposed. This work aims towards the

use of robots for swarm robotic applications (e.g. Khepera

III), radiation inspection applications (e.g. TIM) in hazardous

environment and specifically towards ensuring successful com-

pletion of task from the energy perspective.

III. METHODOLOGY

A. Teleoperated robotic system

A general architecture of a teleoperated robot and the

components used in the proposed energy management module

(in dotted-line boxes) is shown in Fig 1. As ex-plained in

[12], mobile robots usually have multiple components, such

as motors, sensors, and microcontrollers, embedded computers

and communication devices. Communication with the robot

can be either wired or wireless. Embedded computers are used

for high-level computation and micro-controllers for low-level

controls. The remote control station (commanding the robot)

usually consists of communication devices, computers, infor-

mation or video display modules, input and control devices

such as joystick, keyboard and touch panel.

Fig. 1: General architecture of teleoperated robotic system highlighting the
components used in the energy monitoring system

The time-stamped instantaneous battery voltage and total

current used by the robot (instead of measuring current through

each component) is used to build the power models. The

energy needed by the robot to preform any task (including

the on-line estimation of energy required to return to its

base station) can be predicted with the help of these power

consumption models. Most of the robots provide internal

battery voltage information. Some robots are equipped with a

battery charging system that provides both voltage and current

information at run time.

B. On-line energy prediction modelling system

Power consumed by the robot depends on the number of

active components; whereas, the energy consumption depends

on the power consumption as well as the amount of time

each component is active. A one-time process for generating

the power models for various components can be developed

by conducting some pre-determined series of operations on

the robot (e.g. Fig. 2) either manually or programmed opera-

tions in the robot’s embedded computer. When an additional

component (hardware) is added to the robot, the robot’s

existing power model is updated. This feature makes the

energy prediction algorithm modular and expandable for future

modifications in the robot.

Fig. 2: Sequence of operations to determine power models of various
components in a mobile robot

The instantaneous power consumption Pi of the mobile

robot is the sum of power consumed by static and dynamic

power consuming components. Components such as computer,

controllers, and communication devices consume steady state

power Pstatic (without many fluctuations). Whereas compo-

nents such as sensors and motors whose power consumption

dynamically varies based on their usage are categorizes as

dynamic components with power Pdynamic. The instantaneous

power P i at time instant i is given by:
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P i =

n1∑
i=1

P i
static +

n2∑
i=1

P i
dynamic, where n = n1 + n2 (1)

Here, n1 is the number of static components, n2 is the

number of dynamic components and n is the total number

of components in the mobile robot. The energy consumed by

a component j is the summation of the power consumed by

that component during the time (tj) the component is active.

Ecj =

tj∑
i=1

P i
cj (2)

To obtain the total energy consumed by the robot (Ec) in

driving along a path of length p for tp seconds, integrate all

the n components’ energy consumption as follows:

Ec = Estatic + Edynamic (3)

=

∫ tp

0

n∑
j=1

(Gi
cj · P i

cj ) dt (4)

Where P i
cj is the maximum power consumed by a compo-

nent j at time instant i and Gi
cj is the weight function applied

to each component based on its type as follows:

Gi
cj =

⎧⎪⎨
⎪⎩
1 when component j is active and static

α when component j is active and dynamic

0 when component j is passive

Where, α ≤ 1 is a parameter depends on the duty cycle

(if it’s a motor) or the frequency f (if it’s a sensor) of

the dynamic component that is active at the instant i. For

static components, the maximum power consumed is approx.

equal to the average power consumed by them. For instance,

the static components such as computers and controllers are

always active in a mobile robot. Whereas, the communication

devices need not be necessarily active all the time but can be

passive for some duration. The power consumed by a sensor

operating at a frequency f can be modelled using a linear

equation involving two constants s1 and s2 as [15]:

Psensors = s1 ∗ f + s2 (5)

The motion power depends on various parameters such

as the linear υ and angular velocity ω, linear and angular

accelerations a, ω̇ , mass of the robot m and the slope of

the surface α.

P i
motion = f(υ, ω, a, ω̇,m, α) (6)

Most of the mobile robots use multiple DC motors for

loco-motion with wheels, tracks or modular arrangements. The

power model for DC motor with velocity υ and acceleration

υ̇ at time instant i is given in [20] as follows:

P i
motion = C1 · ai2 + C2 · υi2 + C3 · υi + C4

+ C5 · ai + C6 · ai · υi (7)

The parameters C1, C2, · · · , C6 depends on the motor and

wheel characteristics such as torque constants, damping force,

load inertias, and the nature of the travelling surface. When the

robot travel a pre-defined path, the initial and final velocities

are zero, and therefore the motion power model can be reduced

to:

P i
motion = C1 · ai2 + C2 · υi2 + C3 · υi + C4 (8)

Emotion =

∫ tp

0

(C1 · ai2 + C2 · υi2 + C3 · υi + C4) dt (9)

The total energy consumed by a robot is given below as

a sum of energy consumed by computer, controller, sensors,

motors and communication devices.

Ec = Ecomp+Econ+

ns∑
j=1

Esenj
+

nm∑
j=1

Emotionj
+Ecom

(10)

Once the power model is generated, it can be used to

calculate the on-line energy consumption of each component

while the robot is performing some task or can be used to

predict the energy requirements before the mission based on

the nature of the tasks. The list of active components at any

instant is determined by the operator (manual teleoperation)

or by the program (autonomous). Different tasks or missions

exhibit different energy consumption behaviour; nevertheless,

the energy characterization will allow the operator to optimize

the energy consumption.

Let Ea be the total energy available in a mobile robot.

Since we aim to predict the energy consumed during/before

a mission, the dynamics of the total available energy capacity

in a robot (that depends on the battery chemistry) is out of

scope of this paper and we treat Ea as constant. The reserve

energy available at any instant is given by

Ei
r = Ea − Ei

c (11)

Let us assume that the robot is active for tn seconds during

a mission of travelling a path of length dp with an constant

velocity υp. The time taken by a robot to travel the distance

tp =
dp
υp

(such that tp ≤ tn) is the time during which the

motors are active. The energy needed to execute this mission

En and the reserve energy Er after the execution of this

mission will be:

En = (Pstatic · tn + Pmotion@ui · tp) (12)

Er = Ea − En (13)
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IV. EXPERIMENTAL SETUP

The Khepera III mobile robot (127x123x70 mm3, Fig 4),

produced by the K-team Corporation, has an inbuilt smart

battery monitoring system providing the current state of the

battery (voltage, current, capacity remaining, and temperature)

and hence this robot was selected to start with our experiments

so that no additional hardware module (e.g. current sensor)

was needed.

(a) Opened (b) Closed

Fig. 4: Khepera mobile robot

Khepera III powered by a rechargeable Li-polymer battery

pack of 1400 mAh, has 2 DC brushed servo motors, 11 infra-

red sensors and 5 ultrasonic sensors. Korebot II, a mini-

computer (extension module) that hosts Bluetooth and Wi-Fi

communication modules is added to the Khepera III robot.

The voltage and current values are recorded at a sampling

frequency of 20 Hz.
As soon as the robot is started, the power consumed by

various components is recorded by activating or controlling the

components one by one. Programs for deriving the power mod-

els from a series of operations (Fig. 4, right) and calculating

the energy consumption of each component (by determining

the duration for which each component was active) were writ-

ten in MATLAB and tested with the robot’s datasets created

during the experiments. Initially the computer is turned on and

hence Pcomp is calculated. Then, the controllers are activated

and the power Pcon is noted. Each other component’s power

consumption is calculated by subtracting from the previous

power value after the activation of the respective components.
Since all sensors data were needed during teleoperation to

ensure safety of the robot and surroundings, all the sensing

elements were active at maximum frequency throughout the

experiments. Motors are the only dynamic components. Hence

the static power component is the sum of sensing, controller

and computer power. Pstatic = Psen + Pcomp + Pcon + Pcom

and Pdynamic = Pmotion. The computer consumes an average

0.5 W power. Therefore, the sensing and control power is

obtained by subtracting 0.5 W from the static power.

As the Khepera mobile robot is small in size and mass,

the power model for locomotion is assumed (and is evident

in the experiments) to be linear with respect to the average

speed (of both motors) and the only cases considered were

constant payload on a flat surface. However for bigger robots,

this assumption does not hold true and hence the motion

energy model (Equation 7 or 9) should be used instead. The

acceleration effects are negligible when compared to the effect

of velocity on power consumed by the motor [15]. Hence, the

equation 9 can further be reduced adding the effect of payload

mass mp as:

P i
motion = Cυ · υi + Cmp

·mp + CI (14)

Where, the parameter CI depends on the robot’s mass mr and

its inertia.

The power consumption of static components is observed

to be almost constant (average values are used). The range of

speed used in teleoperation experiments is 28 mm/s - 138 mm/s.

With the measurement of motion power corresponding to the

speed and payload of the robot (Fig 3a), a least square fit to

the equation 14 can be applied to the measured data arriving

at the following equation.

P i
motion = 2.4 · υi + 0.22 ·mp + 0.36 (15)

The generated power model (Fig 3c) is used for energy

prediction modelling system. It can be noted that the Wi-

Fi module consumes significantly higher power than other

components.

To verify the accuracy of the energy prediction models, we

conducted two different type of tasks with the robot travelling

from point A to point B (Fig 5a). For the experiments, the

total time for completing the task tn = 125 s and the time
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(a) Robot path during tasks (b) Measured speed, power and energy during taskA (c) Measured speed, power and energy during taskB

Fig. 5: Experimental tasks performed and the measured values during the operation

for motion is tp = 100 s. The measurements sampling time

dt = 50ms.
The first task (taskA) is to run the robot with same

velocity but with different static power consumers (i.e. the

dynamic power consumption remains same in both case). In

this scenario, the robot preformed the task twice, one using

Wi-Fi module (taskAWiFi) and again using Bluetooth module

(taskABt). The robot moved at a constant velocity υ = 56 mm/s.

The measured speed, power and energy for taskA (Fig 5b)

show a minor power change at 70 s due to a small speed

bump on the path. The second task (taskB) is to circulate the

robot in the robot arena (with point A as the origin) at different

velocities. Figure 5c shows the measured speed, power and

energy for taskB .

The total energy drawn by the robot can be calculated by

integrating the instantaneous power values (using voltage and

current measurements)

Eref =

tn∑
i=0

V i · Ii (16)

This energy value (eqn. 16) is used as the ground truth

reference value against which the predicted energy value

using the energy models (equation 4) are compared. The

predicted energy values Epred for taskAWiFi and taskABt are

computed using the derived power models in Fig 3c and the

equations 4,15 and 13.

V. RESULTS AND DISCUSSIONS

Figures 7 and 6 show the comparison of the reference energy

values (computed with the measured data) and the predicted

energy values (computed with the energy prediction models).

The energy prediction error is calculated as:

Error(%) =
Eref − Epred

Eref
· 100 (17)

The mean error of the model-based energy calculation is 1.6%

(with a range of -2.8% to +3.8%. This proves that this method

is highly accurate for application to energy prediction system

to small scale robots.

Fig. 6: Comparison of predicted (model-based) and measured (Reference)
energy values with speed for taskB

Considering the prediction error as 4% (eqn. 17), measure-

ment error with the current and voltage transducers as 2%

(from the transducer specifications), and a standard deviation

from the average values as 4% (eqn.5), the energy prediction

system should have a margin of at-least 10% for effective

energy prediction and mission panning.

A. Energy optimisation

To travel from point A to point B, the energy saving made

by operating the robot at higher speed (138 mm/s) is 73%

compared to operating the robot at 28 mm/s (based on fig 6). It

can be observed that around 33% of energy can be saved by

using the Bluetooth module instead of the WiFi module for

communication. However, the Bluetooth standard has more

constraints than WiFi (such as lesser distance range, lower

data-rate capability). If the robot is operated at maximum

speed and does not use any communication device, then the

energy savings (computed using energy models) can be upto

83%. Hence based on the system’s needs and requirements,

appropriate components have to be selected to minimize

energy consumption. The energy savings depend on the type
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Fig. 7: Comparison of predicted (model-based) and measured (Reference)
energy values showing the prediction error

of robot and the nature of the tasks.

This study is based only on a small robot and hence for

bigger robots, other effects have to be considered such as bat-

tery’s lifetime, proper cycling of charging and discharging the

batteries and recovering energy through regenerative braking.

B. Energy simulations

Using the energy models, the tasks to be performed can

be well planned to meet the energy demand of the robot. The

simulated energy consumption models can be used to optimize

and prepare robotic interventions by simulating the energy

requirements. For instance, Player/Stage is a widely used

simulator in the robotics research community to test robots’

performance in a given environment. If the energy models

are integrated into such simulators, it will be possible to

simulate the energy consumption for specific tasks, situations

and surroundings.

VI. CONCLUSIONS AND FURTHER WORK

A generic approach for on-line energy prediction modelling

system for a mobile robot is presented along with applications

to energy optimization with an aim to provide increased safety

and reliability for robots operating in hostile environments.

The proposed method demonstrated high accuracy (≥ 96%)

during tests and can be also be used in saving energy by

pre-predicting and pre-planning the robotic mission. A simple

but effective and adaptive approach is followed so that this

energy management feature can be used by many types of

small-scale mobile robot (such as differential/skid steered,

wheeled/tracked) as an additional module.

Future plans include integration of this energy prediction

and optimisation module in a large sized robotic platform such

as the TIM [19].
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